Search Bibliography
Filter by: Year
Title Keyword
Total result(s) found: 51
  • Exploring nanofibrous self-assembling peptide hydrogels using mouse myoblast cells for three-dimensional bioprinting and tissue engineering applications

    W. Arab, K. Kahin, Z. Khan, C.A.E. Hauser

    Int. J. Bioprint, 5(2): 198, 2019
Three-dimensional bioprinting, Peptide, Biomaterials, Bioinks, Tissue engineering, Myoblasts
  • A chemically well-defined, self-assembling 3D substrate for long-term culture of human pluripotent stem cells

    Y. Loo, Y.S. Chan, I. Szczerbinska, B.C.P. Tan, A.C.A. Wan, H.H. Ng, C.A.E. Hauser

    ACS Appl. Bio Mater., 2, 4, 1406-1412, 2019  
Xeno-free nanofibrous scaffolds, Ultrashort peptides, Self-assembled peptide hydrogels Human pluripotent stem cells
  • Self‐assembling amyloid‐like peptides as exogenous second harmonic probes for bioimaging applications

    M. Ni, Sh. Zhuo, C. Iliescu, P.T.C. So, J.S. Mehta, H. Yu, C.A.E. Hauser

    Journal of Biophotonics, 2019
Bioimaging, Nonlinear optical materials, Second harmonic generation, Self‐assembly Ultrashort peptides
  • Development of a robotic 3D bioprinting and microfluidic pumping system for tissue and organ engineering

    K. Kahin, Z. Khan, M. Albagami, S. Usman, S. Bahnshal, H. Alwazani, M.A. Majid, S. Rauf, C. Hauser

    Proceedings Volume 10875, Microfluidics, BioMEMS, and Medical Microsystems XVII; 108750Q, 2019
Robotics, 3D printing, 3D modeling, MATLAB, 3D image processing
  • Optimization of a 3D bioprinting process using ultrashort peptide bioinks

    Z. Khan, K. Kahin, S. Rauf, G. Ramirez-Calderon, N. Papagiannis, M. Abdulmajid, C.A.E. Hauser

    International Journal of Bioprinting 5(1),173, 2019
3D bioprinting; Ultrashort peptides; Biomaterials; Bioinks; Tissue engineering; Vacuum system
  • Thin peptide hydrogel membranes suitable as scaffolds for engineering layered biostructures

    W.Y. Seow, K. Kandasamy, K. Purnamawati, W. Sun, C.A.E. Hauser

    Acta Biomaterialia, 2019​
Ultrashort peptide hydrogel; Disulfide bonds; Tissue engineering; Scaffolds; Layered biostructures; Membranes
  • ​Novel ultrashort self-assembling peptide bioinks for 3d culture of muscle myoblast cells
    W. Arab, S. Rauf, O. Al-Harbi, C. Hauser
    Open Journal Systems, 2018
Biomaterials, Bioinks, 3D cell culture, 3D Scaffold, Tissue engineering, Skeletal muscle cells
  • Evaluation of peptide nanogels for accelerated wound healing in normal micropigs

    W.T. Arab, A.M. Niyas, K. Seferji, H.H. Susapto and C.A.E. Hauser

    Frontiers in Nanoscience and Nanotechnology, 2018
Ultrashort peptides, Self-assembly, Nanogels, Chronic wounds, Dressing, Wound healing
  • C-Terminal residue of ultrashort peptides impacts on molecular self-assembly, hydrogelation, and interaction with small-molecule drugs

    K.H. Chan, W.H. Lee, M. Ni, Y. Loo & C.A.E. Hauser

    Scientific Reports, Volume 8, Article number: 17127, 2018

Ultrashort peptides, Molecular self-assembly, Hydrogelation, Small-molecule drugs
  • ​Towards biologically relevant synthetic designer matrices in 3D bioprinting for tissue engineering and regenerative medicine
    R.M. Costa, S. Rauf, C.A.E. Hauser
    Current Opinion in Biomedical Engineering, Volume 2, Pages 90-98, 2017​
3D bioprinting, Bioinks, Synthetic scaffolds, Tissue reconstruction, Hydrogels, Scaffold functionalization, Biomedical engineering
  • ​Transparent crosslinked ultrashort peptide hydrogels as a carrier dressing with high shape fidelity to accelerate healing of full-thickness excision wounds
    W.Y. Seow, G. Salgado, E.B. Lane, and C.A.E. Hauser   
    Scientific Reports 6 (2016), 32670
Peptide hydrogels, High shape fidelity, Excision wounds, Human body
  • ​Freeze-dried agarose gels: A cheap, simpe and recyclable adsorbent for the purification of methylene blue from industrial wastewater
    W.Y. Seow and C.A.E. Hauser
    Journal of Environmental Chemical Engineering 4 (2016) 1714-1721
Adsorption, Agarose hydrogel, Freeze dry, Methylene blue, Textile and industrial wastewater, Water purification
  • ​Roadmap on biosensing and photonics for nanomedicine
    E. Di Fabrizio, S. Schlücker, J. Wenger, R. Regmi, H. Rigneault, G. Calafiore, M. West, S. Cabrini, M. Fleischer, N. van Hulst, M.F. Garcia-Parajo, A. Pucci, D. Cojoc, C.A.E. Hauser, and M. Ni
    Journal of Optics 18 (2016) 063003
Biophotonics, Biosensing, Nanomedicine, Nanophotonics, Plasmonics
  • ​Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications
    Y. Loo and C.A.E. Hauser
    Biomedical Materials 11 (2016) 014103
Biomaterial, Hydrogel, Nanofiber, Peptide
  • ​Probing droplets with biological colloidal suspensions on smart surfaces by synchrotron radiation micro- and nano-beams
    G. Marinaro, A. Accardo, N. Benseny-Cases, M. Burghammer, H. Castillo-Michel, M. Cotte, S. Dante, F. De Angelis, E. Di Cola, E. Di Fabrizio, C. Hauser and C. Riekel
    Optics and Lasers in Engineering 76 (2016) 57-63
Biological colloids, Digital microfluidics, Micro-/nano X-ray diffraction, MicroFTIR, Synchrotron radition
  • ​3D bioprinting technology for regenerative medicine applications
    D. Sundaramurthi, S. Rauf, and C.A.E. Hauser
    International Journal of Bioprinting, 2 (2016) 9-16
Bioprinting, Bioinks, Cells, Hydrogels, Scaffolds, Organ transplantation
  • Tumor-derived circulating endothelial cell clusters in colorectal cancer
    I. Cima, S.L. Kong, (...), C.A.E. Hauser, R.M. van Dam, W.-Y. Lim, S. Prabhakar, B. Lim, P.K. Koh, P. Robson, J.Y. Ying, A.M. Hillmer, and M.-H. Tan
    Science Translational Medicine 8 (2016) 345ra8
Cancer, Early detection, Colorectal cancer, Liquid biopsy, Circulating tumor cells, Translational medicine
  • ​Peptide bioink: self-assembling nanofibrous scaffolds for 3d organotypic cultures
    Y. Loo, A. Lakshmanan, M. Ni, L.L. Toh, S. Wang, and C.A.E. Hauser
    Nano Letters 15 (2015) 6919-6925
Bioprinting, Nanofibrous scaffold, Peptide bioink, Smart biomaterials, Stimuli-responsive self-assembly, Ultrashort peptides
  • Self-assembled proteins and peptides as scaffolds for tissue regeneration
    Y. Loo, M. Göktaş, A.B. Tekinay, M.O. Guler, C.A.E. Hauser, and A. Mitraki
    Advanced Healthcare Materials 4 (2015) 2557-2586
Peptides, Proteins, Rational design, Scaffolds, Self-assembly, Tissue engineering
  • Synthesis and bioactivity of a conjugate composed of green tea catechins and hyaluronic acid
    F. Lee, J. Lim, M.R. Reithofer, S.S. Lee, J.E. Chung, C.A.E. Hauser and M. Kurisawa
    Polymer Chemistry, 6 (2015) 4462-4472
Bioactivity; Biocompatibility; Isomers; Mass spectrometry, Nuclear magnetic resonance spectroscopy, Organic acids, Tissue engineering
  • ​The wonder stuff – How peptide hydrogels could change the face of biomedicine
    K.H. Chan, Jaspreet and C.A.E. Hauser
    Laboratory News, (2015)
Peptide hydrogels, Biomedicine, Human body
  • ​In situ synthesis of size-controlled, stable silver nanoparticles within ultrashort peptide hydrogels and their anti-bacterial properties
    M.R. Reithofer, A. Lakshmanan, A.T.K. Ping, J.M. Chin and C.A.E. Hauser
    Biomaterials, 35 (2014) 7535-7542
Silver, Nanoparticle, Peptide, Hydrogel, Self-assembly, Anti-bacterial
  • ​De novo design and experimental characterization of ultrashort self-associating peptides
    J. Smadbeck, K.H. Chan, G.A. Khoury, B. Xue, R.C. Robinson, C.A.E. Hauser, and C.A. Floudas
    PLOS Computational Biology 10 [7] (2014) e1003718
Computational protein design, Sequence selection problem, Amyloid fibril formation, Atomic-level accuracy, Mean-field theory, Cross-beta spine, Flexible templates, Combinatorial libraries, Biological-materials, Compstatin variants
  • ​Creation of consistent burn wounds: a rat model
    E.Z. Cai, C.H. Ang, A. Raju, K.B. Tan, E.C.H. Hing, Y. Loo, Y.C. Wong, H. Lee, J. Lim, S.M. Moochhala, C.A.E. Hauser, and T.C. Lim
    Archives of Plastic Surgery, 41 (2014) 317-324
Animals, Burns, Rats wound healing
  • ​Self-assembled peptide nanostructures for regenerative medicine and biology
    M. Ni and C.A.E. Hauser
    In Micro- and Nano-Fabrication Using Self-Assembled Biological Nanostructures, J. Castillo-Leon and W. Svendsen ed., Elsevier, 2014
Peptide nanofibers, Peptide nanotubes, Ultrashort peptides, Tissue engineering scaffolds, Drug delivery vehicles, Peptide therapeutics
  • ​Highlight on: P-Glycoprotein-dependent trafficking of nanoparticle-drug conjugates
    K.H. Chan and C.A.E. Hauser
    Materials View, 2014  
P-Glycoprotein-dependent, Nanoparticle-drug conjugates, Nanoparticles,
  • ​Amyloid-based nanosensors and nanodevices
    C.A.E. Hauser, S. Maurer-Stroh and I.C. Martins
    Chemical Society Reviews, 43 (2014) 5326-45
Fibril-forming segments, Dip-pen nanolithography, X-ray-diffraction, Alzheimers-disease, Peptide nanotubes, Carbon nanotubes, Molecular-basis, Globular-proteins
  • ​Short to ultrashort peptide hydrogels for biomedical uses
    W.Y. Seow and C.A.E. Hauser
    Materials Today 17 (2014), 381–388
Self-assembling peptide, Beta-sheet tapes, Amphiphile nanofibers, Hyaluronic-acid, Complementary oligopeptide, Mechanical-properties, Gelation properties, Amyloid fibrils, Cell-culture
  • ​Ultrashort peptide nanofibrous hydrogels for the acceleration of healing of burn wounds
    Y. Loo, Y.C. Wong, E.Z. Cai, C.H. Ang, A. Raju, A. Lakshmanan, A.G.W. Koh, H.J. Zhou, T.C. Lim, S.M. Moochhala, and C.A.E. Hauser
    Biomaterials, 35 (2014) 4805-14
Ultrashort peptide hydrogels, Nanofibers, Self-assembly, Partial thickness burns, Wound healing
  • ​Ligation of anti-cancer drugs to self-assembling ultrashort peptides by click chemistry for localized therapy
    M.R. Reithofer, K.-H. Chan, A. Lakshmanan, D.H. Lam, A. Mishra, B. Gopalan, M. Joshi, S. Wang, and C.A.E. Hauser
    Chemical Science, 5 (2014) 625-630
Hydrogel matrices, Cancer-chemotherapy, Colorectal-cancer, Targeted delivery, Carbon nanotubes, Controlled-trial, Platinum drugs, Pharmacokinetics
  • Influence of metal salts on the hydrogelation properties of ultrashort aliphatic peptides
    A. Mishra, K.-H. Chan, M.R. Reithofer, and C.A.E. Hauser
    RSC Advances, 3 (2013) 9985-9993
Self-assembling peptide, Hofmeister series, Spectroscopy, Stability, Scaffolds, Coordination, Biomaterials
  • ​Tunable mechanical properties of ultrasmall peptide hydrogels by crosslinking and functionalization to achieve the 3D distribution of cells
    W.Y. Seow and C.A.E. Hauser
    Advanced Healthcare Materials, 2 (2013) 1219-1223
Ultrasmall peptides, Hydrogel, Disulfide bonds, 3D environment, Crosslinking
  • ​A convenient and minimally-invasive method to study gel formation by surface tension measurements
    W.Y. Seow and C.A.E. Hauser
    Journal of Chemical Science and Technology, 2 (2013) 88-92
Hydrogel; Gelation Kinetics; Surface Tension; Gel Formation
  • ​Oxidation as a facile strategy to reduce the surface charge and toxicity of polyethyleneimine gene carriers
    W.Y. Seow, K. Liang, M. Kurisawa, and C.A.E. Hauser
    Biomacromolecules, 14 (2013) 2340-2346
Poly(ethylenimine), Degradation, Efficiency, Peptides, Vector, Cells
  • Aliphatic peptides show similar self-assembly to amyloid core sequences, challenging the importance of aromatic interactions in amyloidosis
    A. Lakshmanan, D.W. Cheong, A. Accardo, E. Di Fabrizio, C. Riekel, and C.A.E. Hauser
    PNAS, 110[2] (2013) 519-524
Fibril formation, Structural-characterization, Polypeptide iapp, Building-blocks, X-ray, Nanostructures, Transthyretin, Oligomers, Proteins
  • ​Peptide hydrogels support stem cell applications in regenerative medicine
    C.A.E. Hauser and Y. Loo
    Gynäkologische Endokrinologie, 10 (2012) 255-264
Pluripotent stem cells, Embryonic stem cells, Hydrogels, Peptides, Cell culture
  • ​Self-assembling peptides as cell-interactive scaffolds
    E.C. Wu, S. Zhang, and C.A.E. Hauser
    Advanced Functional Materials, 22[3] (2011) 456-468
Self-assembly, Peptides, Scaffold, Tissue engineering
  • Short self-assembling peptides as building blocks for modern nanodevices
    A. Lakshmanan, S. Zhang, C.A.E. Hauser
    Trends in Biotechnology, 30[3] (2011) 155-165
Ionic-complementary peptide, Nanoparticle superstructures, Nanotechnological applications, Diphenylalanine nanotubes, Amphiphile nanofibers, Modified electrodes, Manipulation
  • ​From short peptides to nanofibers to macromolecular assemblies in biomedicine
    Y. Loo, S. Zhang and C.A.E. Hauser
    Biotechnology Advances, 30[3] (2011) 593-603
Hydrogels, Self-assembling peptide motifs, Fibril formation, Supramolecular architecture, Regenerative medicine
  • ​Self-Assembling peptide surfactants A6K and A6D Adopt α-helical structures useful for membrane protein stabilization
    K. Oglęcka, F. Zhuang, and C.A.E. Hauser
    Membranes, 1 (2011) 314-326
Fiber diffraction, Molecular dynamics simulation, Self-assembly mechanism, Supramolecular peptide scaffolds, Ultrasmall peptides
  • ​Ultrasmall peptides self-assemble into diverse nanostructures: morphological evaluation and potential implications
    A. Lakshmanan and C.A.E. Hauser
    International Journal of Molecular Sciences, 12 (2011) 5736-5746
Ultrasmall peptides, Self-assembly, Bioengineering, Nanotechnology, Supramolecular structures, Origin of life
  • ​The effect of thiol functional group incorporation into cationic helical peptides on antimicrobial activities and spectra
    N. Wiradharma, M. Khan, L.-K. Yong, C.A.E. Hauser, S.V. Seow, S. Zhang, Y.-Y. Yang
    Biomaterials, 32 (2011) 9100-9108
Antimicrobial peptides (AMP), alpha-Helix, Thiol and sulfhydryl, Membrane lysis, Hemolysis, Drug resistance
  • ​Ultrasmall natural peptides self-assemble to strong temperature-resistant helical fibers in scaffolds suitable for tissue engineering
    A. Mishra, Y. Loo, R. Deng, Y.J. Chuah, H.T. Hee, J.Y. Ying and C.A.E. Hauser
    NanoToday, 6 (2011) 232-239
Ultrasmall peptides, Self-assembly, Hydrogels, Tissue engineering
  • Synthetic cationic amphiphilic α-helical peptides as antimicrobial agents
    N. Wiradharma, U. Khoe, C.A.E. Hauser, S.V. Seow, S. Zhang, and Y.Y. Yang
    Biomaterials, 32 (2011) 2204-2212
α-Helix, Antimicrobial peptides (AMP), Hemolysis, Membrane lysis, Minimum inhibitory concentration (MIC)
  • Natural tri- to hexapeptides self-assemble in water to amyloid β-type fiber aggregates by unexpected α-helical intermediate structures
    C.A.E. Hauser, R. Deng, A. Mishra, Y. Loo, (...), A. Accardo, M.B. Sullivan, C. Riekel, J.Y. Ying, and U. Hauser
    PNAS, 108 (2011) 1361–1366
Self-assembly mechanism, Ultrasmall peptides, Supramolecular peptide scaffolds, Fiber diffraction, Molecular dynamics simulation
  • ​Peptides as biological semiconductors
    C.A.E. Hauser, S. Zhang
    Nature, 468 (2010) 516-517
Quantum confinement, Nanotubes
  • ​Designer self-assembling peptide nanofiber biological materials
    C.A.E. Hauser, S. Zhang
    Chem. Soc. Rev. 39 (2010) 2780-2790
Surfactant-like peptides, Complementary oligopeptide, Beta-sheet, Endothelial-cells, Form nanotubes, In-vitro, scaffolds, Hydrogel, Differentiation, Nanovesicles
  • ​Study of bioengineered zebra fish olfactory receptor 131-2: receptor purification and secondary structure analysis
    K.-J. Leck, S. Zhang and C.A.E. Hauser
    PLoS One, 5 [11] (2010) 2780-2790
HEK293S tetracyclineinducible system, G protein coupled receptor, Zebra fish receptor
  • ​Molecular self-assembly and applications of designer peptide amphiphiles
    X. Zhao, F. Pan, H. Xu, C.A.E. Hauser, S. Zhang, and J.R. Lu
    Chem. Soc. Rev. 39 (2010) 3480-3498
Peptide fragments, Biocompatible materials, Nanomaterials, Surface-active agents
  • Designer self-assembling peptide materials for diverse applications
    C.A.E. Hauser, S. Zhang
    Macromol. Symp. 295 (2010) 30-48
3D cell cultures, Ionic self-complementary peptides, Lipid-like peptides, Molecular self-assembly, Stabilizing membrane proteins, Tissue regeneration
  • ​Development of a small molecule peptidomimetic affinity ligand for efficient purification of the large protein factor VIII
    S. Knör, B. Laufer, A.V. Khrenov, A. Benhida, S.C. Grailly, N. Beaufort, V. Magdolen, C.A.E. Hauser, E.L. Saenko, J.-M.R. Saint-Remy, H. Kessler
    Adv. Exp. Med. Biol., 611 (2009) 151-152
Protein purification, Ligand binding, Protein degradation, Peptides