3D-Printed disposable nozzles for cost-efficient extrusion-based 3D bioprinting

by H. A. Albalawi, Z. Khan, R. H. Rawas, A.U. Valle-Perez, S. Abdelrahman, C.A.E. Hauser
Year:2023 DOI: https://doi.org/10.36922/msam.52

Abstract

3D bioprinting has significantly impacted tissue engineering with its capability to create intricate structures with complex geometries that were difficult to replicate through traditional manufacturing techniques. Extrusion-based 3D bioprinting methods tend to be limited when creating complex structures using bioinks of low viscosity. However, the capacity for creating multi-material structures that have distinct properties could be unlocked through the mixture of two solutions before extrusion. This could be used to generate architectures with varying levels of stiffness and hydrophobicity, which could be utilized for regenerative medicine applications. Moreover, it allows for combining proteins and other biological materials in a single 3D-bioprinted structure. This paper presents a standardized fabrication method of disposable nozzle connectors (DNC) for 3D bioprinting with hydrogel-based materials. This method entails 3D printing connectors with dual inlets and a single outlet to mix the material internally. The connectors are compatible with conventional Luer lock needles, offering an efficient solution for nozzle replacement. IVZK (Ac-Ile-Val-Cha-Lys-NH2) peptide-based hydrogel materials were used as a bioink with the 3D-printed DNCs. Extrusion-based 3D bioprinting was employed to print shapes of varying complexities, demonstrating potential in achieving high print resolution, shape fidelity, and biocompatibility. Post-printing of human neonatal dermal fibroblasts, cell viability, proliferation, and metabolic activity were observed, which demonstrated the effectiveness of the proposed design and process for 3D bioprinting using low-viscosity bioinks.

Keywords

3D printed disposable nozzles extrusion-based printing cost-effective materials
KAUST

"KAUST shall be a beacon for peace, hope and reconciliation, and shall serve the people of the Kingdom and the world."

King Abdullah bin Abdulaziz Al Saud, 1924 – 2015

Contact Us

  • 4700 King Abdullah University of Science and Technology

    Thuwal 23955-6900, Kingdom of Saudi Arabia

    Al-Haytham Building (Bldg. 2)

Quick links

© King Abdullah University of Science and Technology. All rights reserved